Q.
The length of the tangents from any point on the circle 15x2+15y2−48x+64y=0 to the two circles 5x2+5y2−24x+32y+75=0 and 5x2+5y2−48x+64y+300=0 are in the ratio
Let any point P(x1,y1) to the circle x2+y2−516x+1564y=0 ⇒x12+y12−516x1+1564y1=0
Length of tangent from P(x1,y1) to the circle are in ratio S2S1=x12+y12−548x1+564y1+60x12+y12−524x1+532y1+15 =516x1−1564y1−548x1+564y1+60516x1−1564y1−524x1+532y1+15 =−96x1+128y1+900−24x1+32y1+225 =4(−24x1+32y1+225)−24x1+32y1+225=21