Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The least positive integer n such that beginpmatrix cos (π/4)& sin (π/4) - sin (π/4)& cos (π/4) endpmatrix n is an identity matrix of order 2 is
Q. The least positive integer
n
such that
(
cos
4
π
−
sin
4
π
sin
4
π
cos
4
π
)
n
is an identity matrix of order
2
is
2361
213
WBJEE
WBJEE 2018
Report Error
A
4
21%
B
8
71%
C
12
0%
D
16
7%
Solution:
We have,
(
cos
π
/4
−
sin
4
π
sin
π
/4
cos
4
π
)
n
Let
A
=
(
2
1
−
2
1
2
1
2
1
)
⇒
A
=
(
k
−
k
k
k
)
(
where,
k
=
2
1
)
⇒
A
2
=
(
k
−
k
k
k
)
(
k
−
k
k
k
)
=
(
0
−
2
k
2
2
k
2
0
)
A
4
=
(
0
−
2
k
2
2
k
2
0
)
(
0
−
2
k
2
2
k
2
0
)
A
4
=
(
−
4
k
4
0
0
−
4
k
4
)
=
(
−
4
×
4
1
0
0
−
4
×
4
1
)
⇒
A
4
=
(
−
1
0
0
−
1
)
⇒
A
8
=
(
−
1
0
0
−
1
)
(
−
1
0
0
−
1
)
=
(
1
0
0
1
)