Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The interval on which the function f(x) = 2x3 + 9x2 + 12x-1 is decreasing in
Q. The interval on which the function
f
(
x
)
=
2
x
3
+
9
x
2
+
12
x
−
1
is decreasing in
1970
195
Application of Derivatives
Report Error
A
[
−
1
,
∞
]
21%
B
[
−
2
,
−
1
]
47%
C
[
−
∞
,
−
2
]
32%
D
[
−
1
,
1
]
0%
Solution:
f
′
(
x
)
=
6
x
2
+
18
x
+
12
=
6
(
x
2
+
3
x
+
2
)
=
6
(
x
+
2
)
(
x
+
1
)
Since
f
(
x
)
is decreasing.
∴
f
′
(
x
)
≤
0
∴
(
x
+
2
)
(
x
+
1
)
≤
0
⇒
x
+
2
≥
0
,
x
+
1
≤
0
or
x
+
2
≤
0
,
x
+
1
≥
0
⇒
x
≥
−
2
,
x
≤
−
1
or
x
≤
−
2
,
x
≥
1
⇒
−
2
≤
x
≤
−
1
or
−
1
≤
x
<
−
2
[not possible]
⇒
x
∈
[
−
2
,
−
1
]