If n is odd, then numerically greatest coefficient in
the expansion of (1−x)n is 2nCn−1 or 2nCn+1.
Therefore in (1−x)21, the numerically greatest coefficient is 21C10 or 21C11. So, the numerically greatest term =21C11x11 or 21C10x10
So, ∣∣21C11x11∣∣>∣∣21C12x12∣∣ and ∣21C10x10∣>∣21C9⋅x9∣ ⇒10!11!21!>9!12!21!× and 11!10!21!x>9!12!21!(∵x>0) ⇒x<56 and x>65 ⇒x∈(65,56)