Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The interval in which the function f(x)=( log (7+x)/ log (3+x))(x>0) decreases is
Q. The interval in which the function
f
(
x
)
=
l
o
g
(
3
+
x
)
l
o
g
(
7
+
x
)
(
x
>
0
)
decreases is
2440
203
AP EAMCET
AP EAMCET 2019
Report Error
A
(
0
,
3
7
)
B
(
0
,
7
3
)
C
(
0
,
1
)
D
(
0
,
∞
)
Solution:
If the given function
f
(
x
)
=
l
o
g
(
3
+
x
)
l
o
g
(
7
+
x
)
,
x
>
0
is
decreasing function then
f
′
(
x
)
<
0
⇒
[
l
o
g
(
3
+
x
)
]
2
l
o
g
(
3
+
x
)
(
7
+
x
)
1
−
(
3
+
x
)
1
l
o
g
(
7
+
x
)
<
0
⇒
[
l
o
g
(
3
+
x
)
]
2
l
o
g
(
3
+
x
)
(
7
+
x
)
1
−
(
3
+
x
)
1
l
o
g
(
7
+
x
)
<
0
⇒
(
3
+
x
)
(
3
+
x
)
<
(
7
+
x
)
(
7
+
x
)
, it is true for every value of
x
>
0
⇒
x
∈
(
0
,
∞
)