Let I=∫xsec2xdx.
On taking x as first function and sec2x as second function and integrating by parts, we get I=x∫sec2xdx−∫[dxd(x)∫sec2xdx]dx =xtanx−∫tanxdx=xtanx−log∣secx∣+C ⇒I=xtanx+log∣cosx∣+C [log∣secx∣=log∣∣cosx1∣∣=log1−log∣cosx∣ =−log∣cosx∣(∵log=0)]