Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The integral ∫ limits01 (1/.7[(1)x.]) dx, where [.] denotes the greatest integer function is equal to
Q. The integral
0
∫
1
7
[
x
1
]
1
d
x
, where
[
.
]
denotes the greatest integer function is equal to
1895
142
JEE Main
JEE Main 2022
Integrals
Report Error
A
1
+
6
lo
g
e
(
7
6
)
B
1
−
6
lo
g
e
(
7
6
)
C
lo
g
e
(
6
7
)
D
1
−
7
lo
g
e
(
7
6
)
Solution:
0
∫
1
7
[
x
1
]
1
d
x
=
−
1
∫
0
7
[
x
1
]
1
d
x
=
(
−
1
)
[
1
∫
1/2
7
1
d
x
+
1/2
∫
1/3
7
2
1
d
x
+
1/3
∫
1/4
7
3
1
d
x
+
……
∞
]
=
(
7
1
+
2
⋅
7
2
1
+
3
⋅
7
3
1
+
…
∞
)
−
(
7
⋅
2
1
+
7
2
⋅
3
1
+
7
2
⋅
4
1
…
∞
)
=
−
ln
(
1
−
7
1
)
−
7
(
7
2
⋅
2
1
+
7
3
⋅
3
1
+
7
4
⋅
4
1
+
……
∞
)
=
[
as
ln
(
1
+
x
)
=
x
−
2
x
2
+
3
x
3
−
4
x
4
…
∞
]
[
as
ln
(
1
−
x
)
=
−
(
x
+
2
x
2
+
3
x
3
+
4
x
4
…
∞
)
]
=
6
ln
7
6
−
7
(
−
ln
(
1
−
7
1
)
−
7
1
)
=
6
ln
7
6
+
1