Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The integral I= displaystyle ∫ sin (2 θ )[(1 + (cos)2 â¡ θ /2 (sin)2 â¡ θ )]dθ simplifies to (where, c is the integration constant)
Q. The integral
I
=
∫
s
in
(
2
θ
)
[
2
(
s
in
)
2
θ
1
+
(
cos
)
2
θ
]
d
θ
simplifies to (where,
c
is the integration constant)
1531
161
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
l
n
∣
s
in
θ
∣
+
cos
θ
+
c
B
2
l
n
∣
s
in
θ
∣
−
2
s
i
n
2
θ
+
c
C
l
n
∣
s
in
θ
∣
−
s
i
n
2
θ
+
c
D
l
n
∣
cos
θ
∣
+
co
s
2
θ
+
c
Solution:
I
=
∫
s
in
θ
cos
θ
(
1
+
(
cos
)
2
θ
)
d
θ
Let
s
in
θ
=
t
⇒
cos
θ
d
θ
=
d
t
⇒
I
=
∫
t
2
−
t
2
d
t
=
2
l
n
∣
t
∣
−
2
t
2
+
c
=
2
l
n
∣
s
in
θ
∣
−
2
s
i
n
2
θ
+
c