∫[x5(1+x21+x51)]32x12+5x9=∫x15(1+x21+x51)32x12+5x9dx
Dividing numerator and denominator by x15 we get, =∫(1+x21+x51)3x32+x65dx
Put (1+x21+x51)=t x3−2−x6−5=dxdt (x32+x65)dx=−dt =∫t3−dt =−3+1−t−3+1+C=21×t21+C =21(1+x21+x51)21+C =21(x5+x3+1)2x10+C