Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The integral (24/π) ∫ limits0√2 ((2-x2) d x/(2+x2) √4+x4) is equal to.
Q. The integral
π
24
0
∫
2
(
2
+
x
2
)
4
+
x
4
(
2
−
x
2
)
d
x
is equal to____.
665
149
JEE Main
JEE Main 2022
Integrals
Report Error
Answer:
3
Solution:
π
24
0
∫
2
(
x
2
+
2
)
4
+
x
4
(
2
−
x
2
)
d
x
π
24
0
∫
2
x
(
x
+
x
2
)
×
x
x
2
4
+
x
2
x
2
(
x
2
2
−
1
)
d
x
π
24
0
∫
2
(
x
+
x
2
)
(
x
+
x
2
)
2
−
4
(
x
2
2
−
1
)
d
x
x
+
x
2
=
t
d
t
=
(
1
−
x
2
2
)
d
x
I
=
−
π
24
∫
t
t
2
−
4
d
t
=
−
π
24
×
2
1
sec
−
1
(
2
x
+
x
2
)
∣
∣
0
2
=
−
π
12
[
sec
−
1
(
2
2
2
)
−
sec
−
1
(
∞
)
]
=
−
π
12
[
4
π
−
2
×
2
2
π
]
=
−
π
12
[
−
4
π
]
=
3