Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The indefinite integral I= displaystyle ∫ (((sin)2 x - (cos)2 â¡ x)2019/(sin â¡ x)2021 (cos â¡ x)2021)dx simplifies to (where c is an integration constant)
Q. The indefinite integral
I
=
∫
(
s
in
x
)
2021
(
cos
x
)
2021
(
(
s
in
)
2
x
−
(
cos
)
2
x
)
2019
d
x
simplifies to (where
c
is an integration constant)
2918
202
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
2020
(
(
s
in
)
2
x
−
(
cos
)
2
x
)
2020
+
c
B
2020
(
t
an
x
−
co
t
x
)
2020
+
c
C
2020
(
s
in
x
−
cos
x
)
2020
+
c
D
2020
(
(
t
an
)
2
x
+
(
co
t
)
2
x
)
2020
+
c
Solution:
I
=
∫
(
s
i
n
x
c
o
s
x
s
i
n
2
x
−
c
o
s
2
x
)
2019
s
i
n
2
x
c
o
s
2
x
1
d
x
=
∫
(
tan
x
−
cot
x
)
2019
(
s
i
n
2
x
c
o
s
2
x
s
i
n
2
x
+
c
o
s
2
x
)
d
x
=
∫
(
tan
x
−
cot
x
)
2019
(
sec
2
x
+
cosec
2
x
)
d
x
Let
tan
x
−
cot
x
=
t
⇒
(
sec
2
x
+
cosec
2
x
)
d
x
=
d
t
∴
I
=
∫
t
2019
d
t
=
2020
t
2020
+
c
=
2020
(
t
a
n
x
−
c
o
t
x
)
2020
+
c