Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The general solution of the equation (1- sin x+ ldots+(-1)n sin n x+ ldots ldots/1+ sin x+ ldots+ sin n x+ ldots)=(1- cos 2 x/1+ cos 2 x)
Q. The general solution of the equation
1
+
s
i
n
x
+
…
+
s
i
n
n
x
+
…
1
−
s
i
n
x
+
…
+
(
−
1
)
n
s
i
n
n
x
+
……
=
1
+
c
o
s
2
x
1
−
c
o
s
2
x
132
151
Trigonometric Functions
Report Error
A
(
−
1
)
n
(
π
/3
)
+
nπ
B
(
−
1
)
n
(
π
/6
)
+
nπ
C
(
−
1
)
n
+
1
(
π
/6
)
+
nπ
D
(
−
1
)
n
−
1
(
π
/3
)
+
nπ
Solution:
1
+
s
i
n
x
+
…
+
s
i
n
n
x
+
…
1
−
s
i
n
x
+
…
+
(
−
1
)
n
s
i
n
n
x
+
……
=
1
+
c
o
s
2
x
1
−
c
o
s
2
x
⇒
1
+
s
i
n
x
1
×
1
1
−
s
i
n
x
=
2
c
o
s
2
x
2
s
i
n
2
x
⇒
cos
2
x
−
cos
2
x
sin
x
=
sin
2
x
+
sin
3
x
(
sin
x
+
1
=
0
)
⇒
2
sin
2
x
+
sin
x
−
1
=
0
⇒
sin
x
=
−
1
or
sin
x
=
1/2
Since
sin
x
=
−
1
we have
sin
x
=
1/2
=
sin
(
π
/6
)
⇒
x
=
nπ
+
(
−
1
)
n
(
π
/6
)
,
n
∈
Z