We have, x2ydx−(x3+y3)dy=0 ⇒dxdy=x3+y3x2y
Given differentiate equation is in the form of homogeneous differentiate equation.
So, let y=vx ⇒dxdy−v+xdxdv ∴v+xdxdv=1+v3v ⇒xdxdv=1+v3v−v ⇒xdxdv=1+v3v−v−v4 ⇒xdxdv=1+v3−v4 ⇒v41+v3dv=−xdx
Integrating both side, we get ∫(v4l+vl)dv=−∫x1dx ⇒−3v31+log∣v∣=−logx+c ⇒−3y3x3+log∣∣xy∣∣=−log∣x∣+c ⇒−3y3x3+log∣y∣=c