1+sin2x=3sinx⋅cosx,tanx=21
Divided by cos2x on both sides, cos2x1+cos2xsin2x=3cosx⋅cosxsinx⋅cosx sec2x+tan2x=3tanx 1+tan2x+tan2x=3tanx 2tan2x−3tanx+1=0 2tan2x−2tanx−tanx+1=0 2tanx(tanx−1)−1(tanx−1)=0 (tanx−1)(2tanx−1)=0 tanx=1,21
We take, tanx=1(∵tanx=21) tanx=tan(π/4) x=nπ+π/4,n∈Z