dxdy+x2−1xy=1−x2x4+2x
This is a linear differential equation
I.F. =e∫x2−1xdx=e21ㅂ∣x2−1=1−x2 ⇒ solution is y1−x2=∫1−x2x(x3+2)⋅1−x2dx
or y1−x2=∫(x4+2x)dx=5x5+x2+c f(0)=0⇒c=0 ⇒f(x)1−x2=5x5+x2
Now, −3/2∫3/2f(x)dx=−3/2∫3/21−x2x2dx (Using property) =20∫3/21−x2x2dx =20∫π/3cosθsin2θcosθdθ( Taking x=sinθ) =20∫π/3sin2θdθ=2[2θ−4sin2θ]0x/3 =2(6π)−2(83)=3π−43