Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The function f(x) = x3 + 6x2 + (9 + 2 k) x + 1 is strictly increasing for all x, if
Q. The function
f
(
x
)
=
x
3
+
6
x
2
+
(
9
+
2
k
)
x
+
1
is strictly increasing for all
x
, if
3496
222
Application of Derivatives
Report Error
A
k
>
2
3
33%
B
k
≥
2
3
37%
C
k
<
2
3
20%
D
k
≤
2
3
10%
Solution:
Here,
f
(
x
)
=
x
3
+
6
x
2
+
(
9
+
2
k
)
x
+
1
⇒
f
′
(
x
)
=
3
x
2
+
12
x
+
9
+
2
k
.
Now
f
is strictly increasing for all
x
∈
R
if
f
′
(
x
)
>
0
∀
x
∈
R
i.e. if
3
x
2
+
12
x
+
(
9
+
2
k
)
>
0
for all
x
∈
R
i.e. if
1
2
2
−
4
⋅
3
(
9
+
2
k
)
<
0
i.e. if
−
24
k
<
−
36
i.e. if
k
>
2
3
.