y=x1/3(x−1) dxdy=34x1/3−31⋅x2/31=3x2/31[4x−1] now f′(x)=34x1/3−31⋅x−2/3 (non existent at x=0, vertical tangent) f′′(x)=94⋅x2/31+31⋅32⋅x5/31 =9x2/32[2+x1]=9x2/32[x2x+1] ∴f′′(x)=0 at x=−21 (inflection point) graph of f(x) is as A=0∫1(x4/3−x1/3)dx=73x3/7−43x4/3]01 =∣∣73−43∣∣=3∣∣284−7∣∣=289⇒ (D)