Given , f(x)=5+36x+3x2=2x3 ⇒f′(x)=36+6x−6x2
For increasing or decreasing; f′(x)=0 ⇒6+x−x2=0⇒x2−x−6=0 ⇒(x−3)(x+2)=0⇒x=3,−2
Intervals: −∞<x<−2f′(x)=(−ve)(−ve)=(+ve), Increasing −2<x<0 f′(x)=(−ve)(+ve)=(−ve), Decreasing 0<x<3 f′(x)=(−ve)(+ve)=(−ve), Decreasing 3<x<∞ f′(x)=(+ve)(+ve)=(+ve) Increasing ∴ The interval in which f(x) is decreasing is (−2,3)