f(x)−4sin3x−6sin2x+12sinx+100 f′(x)=12sin2xcosx−12sinxcosx+12cosx f′(x)=12cosx[sin2x−sinx+1] ∴−1≤sinx≤1 and 0≤sin2x≤1 ⇒−1≤sin2x−sinx≤0 ⇒0≤sin2x−sinx+1≤1 ⇒sin2x−sinx+1 is always positive. cosx is negative in (2π,π)
so f′(x)≤0 for all x∈(2π,π) ⇒f(x) is decreasing in (2π,π)