Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The function f(x)=4 sin 3 x-6 sin 2 x+12 sin x+100 is strictly
Q. The function
f
(
x
)
=
4
sin
3
x
−
6
sin
2
x
+
12
sin
x
+
100
is strictly
191
151
Application of Derivatives
Report Error
A
increasing in
(
π
,
2
3
π
)
27%
B
decreasing in
(
2
π
,
π
)
45%
C
decreasing in
[
−
2
π
,
2
π
]
18%
D
decreasing in
[
0
,
2
π
]
9%
Solution:
∵
f
(
x
)
=
4
sin
3
x
−
6
sin
2
x
+
12
sin
x
+
100
⇒
f
′
(
x
)
=
12
sin
2
x
⋅
cos
x
−
12
sin
x
⋅
cos
x
+
12
cos
x
+
0
=
12
cos
x
(
sin
2
x
−
sin
x
+
1
)
Since, in second quadrant
sin
x
is
+
v
e
and the cos
x
is
−
v
e
.
So,
f
′
(
x
)
<
0
for all
x
∈
(
2
π
,
π
)