(3x2−2ax+3a2)3=[3(x2+a2)−2ax]3 =3C0{3(x2+a2)}3−3C1{3(x2+a2)}22ax +3C23(x2+a2)(2ax)2−3C3(2ax)3 =27(x2+a2)3−3×9(x2+a2)2×2ax +3×3(x2+a2)4a2x2−8a3x3
Now, open the expansion of (x2+a2)3,(x2+a2)2, we get =27[[3C0(x2)3+3C1(x2)2a2+3C2x2(a2)2+3C3(a2)3] −27[2C0(x2)2+2C1x2a2+2C2(a2)2]×2ax +9(x2+a2)4a2x2−8a3x3 =27[x6+3x4a2+3x2a4+a6]−27[x4+2x2a2+a4]2ax +36a2x2(x2+a2)−8a3x3 =27x6+81x4a2+81x2a4+27a6−54ax(x4+2x2a2+a4) +36a2x4+36a4x2−8a3x3 =27x6+117x4a2+117a4x2+27a6 −54ax5−54a5x−8a3x3−108a3x3 =27x6−54ax5+117a2x4−116a3x3 +117a4x2−54a5x+27a6