Any line through the point (−5,−4) is y+4=m(x+5) mx−y+(5m−4)=0…(i)
Now, radius of circle =(2)2+(3)2−8=4+9−8=5
If it is a tangent , then perpendicular from centre (−2,−3) is equal to the above radius. ∴m2+1m(−2)−(−3)+(5m−4)=5 ⇒−2m+3+5m−4=51+m2 ⇒3m−1=51+m2 ⇒(3m−1)2=5(1+m2) ⇒9m2+1−6m=5+5m2 ⇒4m2−6m−4=0 ⇒4m2−8m+2m−4=0 ⇒4m(m−2)+2(m−2)=0 ⇒(m−2)(4m+2)=0 ⇒m=2,−21
Putting the value of m = 2 in Eq. (i) , we get 2x−y+5x2−4=0 ⇒2x−y+6=0
Again, putting the value of m=−21 in Eq. (i) , we get −21x−y+5(−21)−4=0 ⇒x−2y−5−8=0 ⇒x+2y+13=0