Q.
The equation Z10+(13Zâ1)10=0 has 5 pairs of complex roots a1â,b1â,a2â,b2â,a3â,b3â,a4â,b4â, a5â,b5â. Each pair aiâ,biâ are complex conjugate. Find âaiâbiâ1â.
238
101
Complex Numbers and Quadratic Equations
Report Error
Answer: 850
Solution:
Z10+Z10(13âZ1â)10=0 â´(13âZ1â)10=â1=cosĪ+isinĪ 13âZ1â=(cos(2m+1)Ī+isin2mĪ+Ī)1/10 =ei10(2m+1)Īâ â´Z1â=13âei10(2m+1)Īâ
substituting m=0,1,2,âĻâĻ.9we get
Let Z1â1â=a1â1â and Z10â1â=b1â1â and so on â´aiâbiâ1â=169â13[ei10Īâ+eâi10Īâ]+1 =169â13[e103+Īâ+eâ103+Īâ]+1 â´aiâbiâ1â=170â26RRei10Īâ
and a2âb2â1â=170â26Rei103Īâ etc â´aiâbiâ1â=850â26[cos10Īâ+cos103Īâ+cos105Īâ+cos103Īâ+cos109Īâ] =850â26[cos18â+cos54â+cos90â+cos126â+cos162â] =850