Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The equation sin4 x - (k+2) sin2 x -(k + 3) =0 possesses a solution if
Q. The equation
sin
4
x
−
(
k
+
2
)
sin
2
x
−
(
k
+
3
)
=
0
possesses a solution if
2975
193
Trigonometric Functions
Report Error
A
k > - 3
10%
B
k < -2
13%
C
-3
≤
k
≤
-2
64%
D
k is any positive integer
13%
Solution:
We have,
sin
4
x
−
(
k
+
2
)
sin
2
x
−
(
k
+
3
)
=
0
⇒
sin
2
x
=
2
(
k
+
2
)
±
(
k
+
2
)
2
+
4
(
k
+
3
)
=
2
(
k
+
2
)
±
(
k
+
4
)
⇒
sin
2
x
=
k
+
3
(
∵
sin
2
x
=
−
1
is not possible)
Since
0
≤
sin
2
x
≤
1
,
∴
0
≤
k
+
3
≤
1
or
−
3
≤
k
≤
−
2