Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The equation of the tangent to the curve y = x3 - 6x + 5 at (2,1) is
Q. The equation of the tangent to the curve
y
=
x
3
−
6
x
+
5
at
(
2
,
1
)
is
2313
239
KEAM
KEAM 2016
Application of Derivatives
Report Error
A
6x - y - 11 = 0
B
6x - y - 13 = 0
C
6x + y + 11 = 0
D
6x - y + 11 = 0
E
x - 6y - 11 = 0
Solution:
The equation of the curve
y
=
x
3
−
6
x
+
5
⇒
d
x
d
y
=
3
x
2
−
6
⇒
(
d
x
d
y
)
(
2
,
1
)
=
6
Now, equation of the tangent at
(
2
,
1
)
is
(
y
−
1
)
=
6
(
x
−
2
)
⇒
y
−
1
=
6
x
−
12
⇒
6
x
−
y
−
11
=
0