y=(2x−1)e2(1−x)⇒dxdy=2e2(1−x)−2(2x−1)e2(1−x)=2e2(1−x)(2−2x)=4e2(1−x)(1−x) Put, dxdy=0⇒x=1 Now, dx2d2y=−8e2(1−x)(1−x)−4e2(1−x)⇒(dx2d2y)x=1=−4<0 So, y is maximum at x=1, when x=1,y=1 Thus, the point of maximum is (1,1). The equation of the tangent at (1,1) is y−1=0(x−1) or y=1