Given equation of curve y=(1+x)2y+cos2(sin−1x)
at x=0 y=(1+0)2y+cos2(sin−10) y=1+1 y=2
So we have to find the normal at (0,2)
Now y=e2yln(1+x)+cos2(cos−11−x2) y=e2yln(1+x)+(1−x2)2 y=e2yln(1+x)+(1−x2)…(1)
Now differentiate w.r.t. x y′=e2yln(1+x)[2y⋅(1+x1)+ln(1+x).2y′]−2x
Put x=0&y=2 y′=e2×2ln1[2×2(1+01)+ln(1+0).2y′]−2×0 y′=e0[4+0]−0 y′=4= slope of tangent to the curve
so slope of normal to the curve =−41{m1m2=−1} Hence equation of normal at (0,2) is y−2=−41(x−0) ⇒4y−8=−x ⇒x+4y=8