Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The equation of normal of x2 + y2 - 2x + 4y - 5 = 0 at (2, 1) is
Q. The equation of normal of
x
2
+
y
2
−
2
x
+
4
y
−
5
=
0
at
(
2
,
1
)
is
1632
228
WBJEE
WBJEE 2010
Application of Derivatives
Report Error
A
y
=
3
x
−
5
100%
B
2
y
=
3
x
−
4
0%
C
y
=
3
x
+
4
0%
D
y
=
x
+
1
0%
Solution:
Given equation is
x
2
+
y
2
−
2
x
+
4
y
−
5
=
0
On differentiating, we get
2
x
+
2
y
d
x
d
y
−
2
+
4
d
x
d
y
=
0
⇒
(
y
+
2
)
d
x
d
y
=
1
−
x
⇒
(
d
x
d
y
)
(
2
,
1
)
=
1
+
2
1
−
2
=
3
−
1
⇒
−
(
d
y
d
x
)
(
21
)
=
3
Now, equation of normal is
(
y
−
1
)
=
3
(
x
−
2
)
y
−
1
=
3
x
−
6
⇒
y
=
3
x
−
5