Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The equation of a tangent to the hyperbola 16 x2-25 y2-96 x+100 y-356=0 which makes an angle 45° with its transverse axis is
Q. The equation of a tangent to the hyperbola
16
x
2
−
25
y
2
−
96
x
+
100
y
−
356
=
0
which makes an angle
4
5
∘
with its transverse axis is
3228
176
AP EAMCET
AP EAMCET 2019
Report Error
A
x - y + 2 = 0
40%
B
x - y + 4 = 0
20%
C
x + y + 2 = 0
40%
D
x + y + 4 = 0
0%
Solution:
Given equation of hyperbola
16
x
2
−
25
y
2
−
96
x
+
100
y
−
356
=
0
⇒
25
(
x
−
3
)
2
−
16
(
y
−
2
)
2
=
1
...(i)
Now equation of tangent to the hyperbola (i) having slope
′
1
′
is
y
−
2
=
1
(
x
−
3
)
+
25
(
1
)
−
16
⇒
y
−
2
=
x
−
3
+
3
y
−
2
=
x
−
3
+
3
or
y
−
2
=
x
−
3
−
3
or
x
−
y
−
4
=
0
⇒
x
−
y
+
2
=
0