Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The equation of a common tangent to y2=4x and the curve x2+4y2=8 can be<gwmw style=display:none;></gwmw>
Q. The equation of a common tangent to
y
2
=
4
x
and the curve
x
2
+
4
y
2
=
8
can be
283
163
NTA Abhyas
NTA Abhyas 2022
Report Error
A
x
−
2
y
+
2
=
0
B
x
+
2
y
+
4
=
0
C
x
−
2
y
=
4
D
x
+
2
y
=
4
Solution:
y
2
=
4
x
&
8
x
2
+
2
y
2
=
1
Equation of tangent to above curves are respectively.
y
2
=
m
x
+
m
1
and
y
=
m
x
+
8
m
2
+
2
Comparing
m
1
=
8
m
2
+
2
⇒
m
2
(
8
m
2
+
2
)
=
1
seeing the options
m
=
±
2
1
satisfy the equation
⇒
y
=
±
2
1
x
±
2
⇒
2
y
=
±
x
±
4
i.e.
2
y
=
x
+
4&
x
+
2
y
+
4
=
0