Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The equation of a circle passing through (3,-6) and touching both the axes is
Q. The equation of a circle passing through
(
3
,
−
6
)
and touching both the axes is
3462
172
Conic Sections
Report Error
A
x
2
+
y
2
−
6
x
+
6
y
+
9
=
0
B
x
2
+
y
2
+
6
x
−
6
y
+
9
=
0
C
x
2
+
y
2
+
30
x
−
30
y
+
225
=
0
D
x
2
+
y
2
+
30
x
+
30
y
+
225
=
0
Solution:
Now
(
r
−
3
)
2
+
(
−
r
+
6
)
2
=
r
2
r
2
−
18
r
+
45
=
0
⇒
r
=
3
,
15
Hence circle
(
x
−
3
)
2
+
(
y
+
3
)
2
=
3
2
x
2
+
y
2
−
6
x
+
6
y
+
9
=
0
(
x
−
15
)
2
+
(
y
+
15
)
2
=
(
15
)
2
⇒
x
2
+
y
2
−
30
x
+
30
y
+
225
=
0