Let the required vector be v=xi^+yj^+zk^, then v⋅(i^+j^−3k^)=0 ⇒x+y−3z=0…(i) v⋅(i^+3j^−2k^)=5 ⇒x+3y−2z=5…(ii)
and v⋅(2i^+j^+4k^)=8 ⇒2x+y+4z=8…(iv)
Subtracting (ii) from (i), we have −2y−z=−5 ⇒2y+z=5…(iv)
Multiply (ii) by 2 and subtracting (iii) from it, we obtain 5y−8z=2…(v)
Multiply (iv) by 8 and adding (v) to it, we have 21y=42 ⇒y=2…(v)
Substituting y=2in(iv), we get 2×2+z=5 ⇒z=5−4=1
Substituting these values in (i),we get x+2−3=0 ⇒x=3−2=1
Hence, the required vector is v=xi^+y^+zk^=i^+2j^+k^