cos(sinx)≥0∀x,x=0
Hence, cos(sinx)>0∀x 2−π≤sin−1(2x1+x2)≤2π
i.e. −1≤2x1+x2≤1. If x<0, then 2x1+x2<0
i.e. −1≤2x1+x2⇒−2x≥(1+x2)⇒(1+x2)≤0⇒x=−1
The other side (x>0),1+x2≤2x⇒(x−1)2≤0⇒x=1.
The function is defined only for the two values x=1 and x=−1.