Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The domain of the function f(x)=√(x2 - 8 x + 12) . (ln)2 (x - 3) is
Q. The domain of the function
f
(
x
)
=
(
x
2
−
8
x
+
12
)
.
(
l
n
)
2
(
x
−
3
)
is
1404
207
NTA Abhyas
NTA Abhyas 2020
Report Error
A
[
3
,
∞
)
B
[
4
,
∞
)
C
[
6
,
∞
)
∪
{
2
,
4
}
D
[
6
,
∞
)
∪
{
4
}
Solution:
(
x
2
−
8
x
+
12
)
(
l
n
)
2
(
x
−
3
)
≥
0
and
x
−
3
>
0
⇒
x
2
−
8
x
+
12
≥
0
⇒
x
∈
(
−
∞
,
2
]
∪
[
6
,
∞
)
Also,
l
n
(
x
−
3
)
=
0
⇒
x
=
4
Hence, the solution is
x
∈
{
4
}
∪
[
6
,
∞
)