Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The domain of the function f(x)=(√9-x2/ sin -1(3-x))
Q. The domain of the function
f
(
x
)
=
s
i
n
−
1
(
3
−
x
)
9
−
x
2
2104
191
Manipal
Manipal 2010
Report Error
A
(
2
,
3
)
B
[
2
,
3
)
C
(
2
,
3
]
D
None of these
Solution:
9
−
x
2
is defined for
9
−
x
2
≥
0
⇒
(
3
−
x
)
(
3
+
x
)
≥
0
⇒
(
x
−
3
)
(
x
+
3
)
≤
0
…
(
i
)
⇒
−
3
≤
x
≤
3
sin
−
1
(
3
−
x
)
defined for
−
1
≤
3
−
x
<
1
⇒
−
4
≤
−
x
≤
−
2
⇒
2
≤
x
≤
4
…
(ii)
Also,
sin
−
1
(
3
−
x
)
=
0
⇒
3
−
x
=
0
or
x
=
3
…
... (iii)
From Eqs. (i), (ii) and (iii), we get The domain of
f
=
([
−
3
,
3
]
∩
[
2
,
4
)
−
{
3
}
=
[
2
,
3
)