f(x)=log(x−1)​(x2+4x+4)​ ⇒log(x−1)​(x2+4x+4)≥0
Case 1: 0<∣x∣−1<1
i.e., 1<∣x∣<2 , then 0<x2+4x+4≤1⇒x2+4x+3≤0&(x+2)2>0 ⇒−3≤x≤−1&xî€ =−2
So, x∈(−2,−1)
Case 2: ∣x∣−1>1
i.e., ∣x∣>2 x2+4x+4≥1⇒(x+1)(x+3)≥0⇒x∈(−∞,−3]∪[−1,∞) ⇒x∈(−∞,−3]∪(2,∞)
Hence, domain is (−∞,−3]∪(−2,−1)∪(2,∞)