Q.
The domain of definition of the function, f(x)=[2tanπx]log[2tanπx](4x2−4x−3x2+2x−3) where [ ] denotes the greatest integer function is [n+41,n+21);n∈I then
592
132
Relations and Functions - Part 2
Report Error
Solution:
f(x)=alogaNN and 0<[2tanπx] or [2tanπx]>1 and 4x2−4x−3x2+2x−3>0 i.e. (2x−3)(2x+1)(x+3)(x−1)>0 ⇒x∈(−∞,−3)∪(−1/2,1)∪(3/2,∞).....(i) now 0<[2tanπx]<1 not possible ∴[2tanπx]>1⇒2tanπx≥2⇒tanπx≥1 ⇒nπ+4π≤πx<nπ+2πn∈I ⇒n+41≤x<n+21<....(ii)br/>
Common solution of (i) and (ii) possible only if n=0,n≥2 or n≤−4 ]