We have, f(x)=3−xx−2
Clearly, f(x) is defined for all x satisfying 3−x=0 i.e. x=3.
Hence, Domain (f)=R−{3}.
Let y=f(x), i.e. y=3−xx−2 ⇒3y−xy=x−2 ⇒x(y+1)=3y+2 ⇒x=y+13y+2
Clearly, x assumes real values for all y except y+1=0 i.e. y=−1.
Hence, Range (f)=R−{−1}.