Let A=(1,2,3) B=(3,−1,5) C=(4,0,−3) DR′s of AB=(2,−3,2) DR′ s of BC=(1,1,−8) DR′s of AC=(3,−2,−6)
Here, we noticed that AB⊥AC ⇒∠A=90∘
Orthocentre of ΔABC = vertex A H=(1,2,3)
Circumcentre of ΔABC= mid-point of BC S=(27,2−1,1) ∴ Required distance (HS)=233 (27−1)2+(−21−2)2+(1−3)2 =425+425+4=466