Let the equation of the ellipse be a2x2+b2y2=1.
If S and S' be the foci, then SS′=10.
But SS′=CS+CS′=2ae,C being the centre ∴2ae=10, or ae=5...(1)
Also 2ab2=15...(2)
Also b2=a2(1−e2)=a2−a2e2=a2−25 [using (1)]
By (2),2b2=15a; or =2(a2−25)=15a ∴a=−25 or a=10.
But a cannot be negative, ∴a=10;∴b2=215×10=75.
The equation to the ellipse is therefore 100x2+75y2=1; or 3x2+4y2=300.