The equation of family of ellipse is of the form b2x2+a2y2=1....(i)
(since, foci is on Y-axis, so we draw a vertical ellipse)
On differentiating Eq. (i) w.r.t. x, we get dxd(b2x2)+dxd(a2y2)=dxd(1).....(ii) ⇒b212x+a212yy′=0 xyy′=−b2a2
Again, differentiating w.r.t. x, we get ⇒x2xdxd(yy′)−yy′dxd(x)=0 [ using uqotient rule dxd(vu)=v2vdxd(u)−udxd(v)] ⇒x2x[yy′′+(y′)2]−yy′⋅1=0 [ using product rule dxd(u⋅v)=(udxdv+vdxdu)] ⇒x(y′)2+xyy′′−yy′=0 ⇒xyy′′+x(y′)2−yy′=0
which is the required differential equation.