Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The differential equation (d2 y/d x2)+y+ cot 2 x=0 must be satisfied by
Q. The differential equation
d
x
2
d
2
y
+
y
+
cot
2
x
=
0
must be satisfied by
230
158
Differential Equations
Report Error
A
y
=
2
+
c
1
cos
x
+
c
2
sin
x
0%
B
y
=
cos
x
⋅
ln
(
tan
2
x
)
+
2
7%
C
y
=
sin
x
+
cos
x
29%
D
all the above
64%
Solution:
(1)
d
x
d
y
=
−
c
1
sin
x
+
c
2
cos
x
d
x
2
d
2
y
=
−
c
1
cos
x
−
c
2
sin
x
=
2
−
y
d
x
2
d
2
y
+
y
−
2
=
0
(2)
d
x
d
y
=
cos
x
2
t
a
n
2
x
s
e
c
2
x
/2
−
sin
x
ln
(
tan
2
x
)
d
x
d
y
=
cot
x
−
sin
x
ln
(
tan
2
x
)
d
x
2
d
2
y
=
−
cosec
2
x
−
(
sin
x
⋅
s
i
n
x
1
+
cos
x
ln
(
tan
2
x
)
)
d
x
2
d
2
y
=
−
cot
2
x
−
2
−
cos
x
ln
(
tan
2
x
)
d
x
2
d
2
y
+
y
+
cot
2
x
=
0
(3)
d
x
d
y
=
cos
x
−
sin
x
d
x
2
d
2
y
=
−
cos
x
−
sin
x
d
x
2
d
2
y
+
y
+
cot
2
x
=
cot
2
x