We have x2(tan2α+cos2α)−2xytanα+y2sin2α=0
Comparing this equation with ax2+2hxy+by2=0,
We have, a=tan2α+cos2α,2h=−2tanα and b=sin2α
Let m1 and m2 be the slopes of the lines represented by the given equation, then m1+m2=sin2α2tanα=sinαcosα2
and m1m2=sin2αtan2α+cos2α=cos2α1+sin2αcos2α∴m1−m2=(m1+m2)2−4m1m2=sin2α⋅cos2α4−4sin2αcos2α+tan2α =sin2αcos2α4−4cos2α(cos2α+tan2α) =sin2αcos2α4−4cos4α−4sin2α =sin2αcos2α4cos2α−4cos4α =cos2αsin2α4cos2α(1−cos2α) =cos2α⋅sin2α4cos2α⋅sin2α=4=2