f(x)=2sinx+sin2x f′(x)=2cosx+2cos2x=2(cosx+cos2x) ∴f′(x)=0⇒2cos2x+cosx−1=0 cosx=4−1±3​=−1,21​ ∴x=π,3π​
Now, f(0)=0,f(23π​)=−2 f(π)=0,f(3π​)=223​​+23​​=233​​ ∴ difference between greatest value and least value =233​​+2