Let y=tan−1(x1+x2−1) Put x=tanθ ∴y=tan−1(tanθ1+tan2θ−1) =tan−1(cosθsinθsecθ−1) =tan−1(sinθ1−cosθ) =tan−1(2sin2θcos2θ2sin22θ) =tan−1(tan2θ)=2θ=21tan−1x ∴dxdy=2(1+x)21
Let z=tan−1(1−2x22x1−x2) Put x=sinϕ ∴z=tan−1(1−2sin2ϕ2sinϕcosϕ) =tan−1(cos2ϕsin2ϕ)=2ϕ ∴z=2sin−1x∴dxdz=1−x22 ∴dzdy=1−x222(1+x2)1=4(1+x2)1−x2
At x=0,dzdy=4(1+0)1−0=41