Let y=sin−1(2x1−x2) ?. (i) and z=sin−1(3x−4x3) ...(ii)
Now, x=cosθ putting in Eq. (i), we get y=sin−1(2cosθ1−cos2θ) =sin−1(2cosθsinθ) =sin−1(sin2θ) ⇒y=2θ ⇒y=2cos−1x
Differentiating it w.r.t. θ , we get dθdz=3 ...(iii)
Also, putting x=sinθ in Eq. (ii), we get z=sin−1(3sinθ−4sin3θ)=sin−1(sin3θ) ∴z=3θ
Differentiating it w.r.t. θ , we get dθdz=3 ...(iv) Now, dzdy=dθdy.dzdθ =2.31=32 ∴d(sin−1(3x−4x3))d(sin−12x1−x2)=32