Let y=cos−1x+x−1x−x−1
On differentiating both sides w.r.t. x, we get dxdy=−1−(x+x−1x−x−1)21dxd(x+x−1x−x−1) =−(x+x−1)2−(x−x−1)2x+x−1 ×(x+x−1)2(x+x−1)(1+x−2)−(x−x−1)(1−x−2) =−41((x+x−1)x+x−1+x−1+x−3−(x−x−1−x−1+x−3)) =−21(x+x−1)(4x−1)=−(x2+1)2
Alternate Solution:
Let y=cos−1(x+x−1x−x−1) =cos−1(x2+1x2−1)
Put x=cotθ ∴y=cos−1(cot2θ+1cot2θ−1) =cos−1(1+tan2θ1−tan2θ) =cos−1cos2θ=2θ ⇒y=2cot−1x
On differentiating both sides w. r. t. x, we get dxdy=−1+x22