Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The curve y-exy + x = 0 has a vertical tangent at the point
Q. The curve
y
−
e
x
y
+
x
=
0
has a vertical tangent at the point
2108
214
Application of Derivatives
Report Error
A
(
1
,
1
)
11%
B
at no point
29%
C
(
0
,
0
)
18%
D
(
1
,
0
)
42%
Solution:
y
−
e
x
y
+
x
=
0
⇒
d
x
d
y
−
e
x
y
[
x
d
x
d
y
+
y
⋅
1
]
+
1
=
0
⇒
(
1
−
x
e
x
y
)
d
x
d
y
=
y
e
x
y
−
1
⇒
d
x
d
y
=
1
−
x
e
x
y
y
e
x
y
−
1
⇒
d
y
d
x
=
y
e
x
y
−
1
1
−
x
e
x
y
For a vertical tangent,
d
y
d
x
=
0
which holds at
(
1
,
0
)
. This pt. also lies on the curve.