Let P≡(x,y) on the curve y=f(x)
Ordinate is PM, where M is the foot of the perpendicular from point P on the x -axis
Projection of ordinate on normal =PM′ ∴PM′=PMcosθ=a (given) ∴1+tan2θy=a ⇒y=a1+(dxdy)2 ⇒dxdy=ay2−a2 ⇒∫y2−a2ady=∫dx ⇒aloge∣y+y2−a2∣=x+c