Q.
The coordinates of the points which trisect the line segments joining the points P(4,2,−6) and Q(10,−16,6), are
68
200
Introduction to Three Dimensional Geometry
Report Error
Solution:
Let the point R1 and R2 trisects the line PQ i.e., R1 divides the line in the ratio 1:2. ⇒R1=(1+21×10+2×4,1+21×(−16)+2×2,1+21×6+2×(−6)) =(310+8,3−16+4,36−12)=(318,3−12,3−6) =(6,−4,−2)
Again, let the point R2 divides PQ internally in the ratio 2:1. Then, ⇒R2=(2+12×10+1×4,2+12×(−16)+1×2,1+22×6+1×(−6)) =(320+4,3−32+2,312−6)=(324,3−30,36) =(8,−10,2)
Hence, required points are (6,−4,−2) and (8,−10,2).